
Machine Vision and Applications (2008) 19:1–25
DOI 10.1007/s00138-007-0072-4

ORIGINAL PAPER

Real-time edge-enhanced dynamic correlation and predictive
open-loop car-following control for robust tracking

Javed Ahmed · M. N. Jafri · Mubarak Shah ·
Muhammad Akbar

Received: 31 May 2006 / Accepted: 22 November 2006 / Published online: 5 May 2007
© Springer-Verlag 2007

Abstract We present a robust framework for a real-time
visual tracking system, based on a BPNN-controlled fast
normalized correlation (BCFNC) algorithm and a predictive
open-loop car-following control (POL-CFC) strategy. The
search for the target is carried out in a dynamically gener-
ated resizable search-window. In order to achieve the robust-
ness, we use some edge-enhancement operations before the
correlation operation, and introduce an adaptive template-
updating scheme. The proposed tracking algorithm is com-
pared with various correlation-based techniques and (in some
cases) with the mean-shift and the condensation trackers
on real-world scenarios. A significant improvement in effi-
ciency and robustness is reported. The POL-CFC algorithm
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approximates the current velocity of an open-loop pan-tilt
unit, computes the predicted relative-velocity of the object
using Kalman filter, and generates the precise control signals
to move the camera accurately towards the maneuvering
target regardless of its changing velocity. The proposed
system works in real-time at the speed of 25–200 frames/
second depending on the template size, and it can persistently
track a distant or near object even in the presence of object
fading, low-contrast imagery, noise, short-lived background
clutter, object-scaling, changing object-velocity, varying illu-
mination, object maneuvering, multiple objects, obscuration,
and sudden occlusion.

Keywords Visual tracking · BPNN-controlled fast
normalized correlation · Dynamic search-window · Robust
template-updating · Predictive open-loop car-following
control

1 Introduction

In a typical visual tracking system, the video frames acquired
from the camera are analyzed to find the (x, y) pixel-coor-
dinates of the object of interest. The coordinates are then
directly (or indirectly using a state estimator, e.g. Kalman
filter) sent to a control algorithm which moves a pan-tilt unit
(PTU) so that the camera (which is fitted upon the PTU) can
move towards the object. As a result, the object is always
projected at the center of the video frames.

Efficient tracking of an object in complex environments is
a challenging task for the machine vision community. Some
widely known applications of real-time visual tracking sys-
tem are surveillance and monitoring [15], perceptual user
interfaces [7], smart rooms [40,48], and video compression
[18]. The computational complexity of the tracker is crit-
ical for most applications; only a small percentage of the
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system resources can be allocated for tracking while the rest
is assigned to preprocessing stages or high-level tasks such
as recognition, trajectory interpretation, and reasoning [39].

Several techniques have been proposed by the researchers
for target tracking in the consecutive video frames. Most of
these are either limited to tracking specific class of objects
[2,3,14,17], or assume that the camera is stationary (and
exploit back-ground subtraction) [41,49]. The trackers based
on the particle filter or condensation [25,33,34,45] and
active contours [26,49] do not assume constant background.
They are reported to track the whole object instead of only
the centroid or a portion of the object [49]. However, keep-
ing in mind the present power of a high-end computer, they
are computationally too expensive to be exploited for a prac-
tical real-time tracking application. The mean shift tracker
[11,12] has gained a significant influence in the computer
vision community in recent years, because it is fast, general-
purpose and does not assume static background. Mean-shift
is a nonparametric density gradient estimator to find the
image window that is most similar to the object’s color histo-
gram in the current frame. It iteratively carries out a kernel-
based search starting at the previous location of the object
[37]. There are variants, e.g. [35], to improve its localiza-
tion by using additional modalities, but the original method
requires the object kernels in the consecutive frames to have
a certain overlap. The success of the mean-shift highly
depends on the discriminating power of the histograms that
are considered as the objects’ probability density function
[37]. Another issue in the mean shift tracker is inherent in its
use of histogram, which does not carry the spatial informa-
tion of the pixels [1]. The integral histogram based tracker
[36] matches the color histogram of the target with every pos-
sible region in the whole frame; therefore, it can track even a
very fast moving object. It works slower than the mean shift
tracker, because the mean shift tracker searches for the target
in only a small neighborhood of the previous target-position.
On a P4 3.2 GHz machine, this tracker works with the speed
of about 18 fps, and the mean shift tracker works with the
speed of about 66 fps [36]. Since the histogram does not
contain the spatial information, and there is a risk of picking
up a wrong target having similar histogram (especially when
the search is carried out in the whole image), this tracker
is not adequately robust. More recently, in the covariance
tracking [37], the object is modeled as the covariance matrix
of its features, and the region (in the search image) which
has minimum covariance distance with the model is consid-
ered to be the next target position. The covariance match-
ing process is carried out on a half-resolution grid in the
search image, so half of the object information is lost (which
can be crucial for a very small target) and the accuracy of
the target coordinates found by the algorithm is reduced.
The reported results are quite robust, but the computational
efficiency of the algorithm is not adequate for a real-time

tracking application, because its maximum throughput (as
reported in [37]) is only 7 frames/second on a high-end PC
(P4, 3.2 GHz).

There are also the widely used classic trackers, such as the
edge tracker, the centroid tracker, and the correlation tracker.
A good introduction to these trackers can be found in [6],
where it is reported that the correlation tracker has proved
to be the most robust of the three, especially in a noisy and
cluttered scene. However, the standard correlation tracker
has also some inherent problems. Firstly, it is prone to the
template-drift problem; secondly, its performance tremen-
dously deteriorates in the presence of varying illumination
conditions; thirdly, if the template is kept constant through-
out the tracking session, the detection performance declines
especially when the object changes its shape, size, and ori-
entation. Therefore, it is not adequately robust without some
preprocessing, adaptive template, and above all the modi-
fication in the basic correlation formulation [6,47]. As far
as its implementation is concerned, the correlation opera-
tion in spatial domain can be computationally expensive, if
the search-window-size or the template-size or both are too
large. In order to speed up the computation, the standard
correlation can be implemented in frequency domain using
the convolution theorem of the discrete Fourier transform
[6,23,47]. However, the modified correlation metrics, which
are more robust than the standard correlation, have no direct
counterparts in frequency domain. Moreover, it is not nec-
essary that the correlation in frequency domain is always
faster than its spatial domain implementation, as pointed out
in Sect. 2.

This paper (i.e. its sections on target detection) focuses on
enhancing the efficiency and robustness of the classic correla-
tion tracker by addressing its problems mentioned above. The
correlation metrics are reviewed in Sec. 2, in which we intro-
duce BPNN-controlled fast normalized correlation (BCFNC)
algorithm. The BPNN (back-propagation neural network)
decides if the correlation should be performed in spatial
domain or in frequency domain to achieve the desired effi-
ciency. If the correlation is performed in frequency domain, it
is efficiently normalized exploiting the concept of summed-
area-table (SAT) or integral image [13,28,36], which allows
us to compute the normalizing factor using only four addition
operations. Later on, we also propose a novel and effective
template updating scheme which changes the template grad-
ually with time using the history of the template and the cur-
rent best-match. This template updating scheme minimizes
the template drift phenomenon, and copes with short-lived
occlusion and background clutter. We also introduce a novel
algorithm to dynamically determine the position and size of
the search window using the prediction and the prediction-
errors of a Kalman filter.

The PTU (pan-tilt unit) motion control algorithm is also
an integral part of a successful target tracking system. If the
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control is not smooth and precise, the object in the video
will oscillate to and fro around the center, and in the worst
case it may get out of the frame. One approach is to use
a classic PID controller; however, its design is rather com-
plex and requires a mathematical model of the system (to be
controlled). Besides, it necessitates a sensitive and rigor-
ous tuning of its proportional, differential and integral gain
parameters, especially when they are to be optimized for
use with all the zoom levels of the camera. An alternative
approach is to use a fuzzy controller that does not require the
system model [14], but choosing a set of right membership
functions and fuzzy rules calibrated for every zoom-level of
the camera is practically very cumbersome. Another alter-
native is to implement a neural network controller [24], but
it is heavily dependent on the quality and the variety of the
examples in the training dataset, which can accurately rep-
resent the complete behavior of the controller in all possible
scenarios, including the varying zoom-levels of the camera.
Furthermore, the traditional control algorithms, e.g. [32], are
generally implemented based on the difference between the
centre (reference) position and the current target position in
the image. They do not account for the target velocity. As
a result, there will be oscillations (if the object is moving
slow), a lag (if it is moving with a mediocre speed), and
loss of the object from the frame (if it is moving faster than
the maximum pan-tilt velocity generated by the control algo-
rithm). We present a predictive open-loop car-following con-
trol (POL-CFC) algorithm. Its basic idea is borrowed from
the car-following control (CFC) strategy.1 The CFC assumes
that the actual velocity of the PTU is observable through a
velocity sensor. However, our POL-CFC does not make this
assumption and simply approximates the current PTU veloc-
ity as the previous velocity command. Then, it computes the
relative velocity of the target from the predicted position pro-
vided by the Kalman filter, and generates precise velocity
commands for the PTU to move the camera towards the tar-
get accurately in real-time. Thus, the proposed control strat-
egy is very useful for controlling a system, which does not
feedback its current velocity, such as stepper-motor PTU. Its
performance is tested on real-world scenarios and has proven
to be adequately smooth, fast and accurate. The POL-CFC
algorithm offers 0% overshoot, 0 steady-state tracking error,
and 1.7 s rise-time.

We have implemented the proposed tracking system using
multiple threads. The image processing operations and
Kalman filter are implemented in one thread and the PTU
motion control algorithm is implemented in another thread.
This approach exploits the parallel processing power avail-
able in the micro-processor in a standard PC. As a result, the
processing speed of 25 to 200 frames per second (depend-

1 Basic Control Law for PTU to Follow a Moving Target, Application
Note 01, Directed Perception Inc (1996)

ing on the size of the template) has been achieved, when the
frame size is 320×240 pixels. The proposed system has been
field-tested for more than a year for indoor and outdoor exper-
iments, where it could reliably track a distant or near object
even in the presence of temporary object fading, significant
background clutter, object-scaling, changing object-velocity,
varying illumination conditions, significant object maneu-
vering, multiple objects, obscuration, short-lived occlusion,
and low-contrast imagery.

The paper is organized as follows. Sect. 2 reviews various
correlation-based target detection techniques, and explains
the proposed methodology in detail. The assumed state-space
model of the target dynamics for the Kalman predictor is dis-
cussed in Sect. 3. Section 4 presents a novel approach for cre-
ating the dynamic search window. The evaluative comparison
is performed in Sect. 5. Section 6 describes the camera motion
control in detail. The experimental results of the proposed
target tracking system are presented in Sect. 7. The imple-
mentation of the overall system is summarized in Sect. 8.
Finally, we present some future directions and conclude in
Sect. 9.

2 Correlation-based template matching

In this section, we present a brief review of the correlation
metrics for the template matching application, and discuss
the proposed BPNN-controlled fast normalized correlation
(BCFNC). The BCFNC is an integral part of the proposed
target tracking algorithm, which is explained and compared
with the other methods in Sect. 5.

2.1 Correlation metrics

Consider a template (a gray-level image of the object), t , and a
search window (a gray-level image in which the object is sup-
posed to exist), s. The position of the target can be detected
by matching the template with every template-size section
in the search window. There are various template matching
schemes, but we focus on only the correlation-based meth-
ods. The standard 2-D correlation metric is given as [6,23]:

c(m, n) =
K−1∑

i=0

L−1∑

j=0

s(m + i, n + j)t (i, j), (1)

where c(m, n) is the element of the correlation surface (i.e.
matrix) at row m and column n, K is the number of rows
in the template, L is the number of columns in the template,
m = 0, 1, 2, . . . , M − K +1, n = 0, 1, 2, . . . , N − L +1, M
is the number of rows in the search window such that M ≥ K ,
and N is the number of columns in the search window such
that N ≥ L .

The standard correlation can be efficiently computed in
frequency domain as:
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c = real(i f f t (S. ∗ T ∗)), (2)

where S and T are the 2-D discrete Fourier transforms (DFT)
of s and t , respectively. The superscript (∗) over T indicates its
conjugate, the symbol (.*) indicates the element-by-element
multiplication, i f f t (.) is the inverse fast Fourier transform
function, and the real(.) function extracts the real part of a
complex matrix. The real part is extracted because the imag-
inary part of the resulting complex matrix is almost zero,
since s and t are real 2-D signals. Note that s and t must
be appropriately zero padded before getting their transforms
to obtain correct results, because of the periodic nature of
the discrete Fourier transform [23]. The minimum size of the
zero-padded images should be P×Q, where P = M +K −1
and Q = N + L − 1.

Once the correlation surface is built, the maximum value
in the correlation matrix, cmax, is found at (m∗, n∗) which
indicates the position of the top-left corner of the best-match
(i.e. the image section that matches best with the template)
in the search window.

However, the standard correlation described above is
highly sensitive to varying illumination conditions because
it produces cmax at the brightest spot in the search image.
Furthermore, the correlation value is dependent on the size
of the template, and is not normalized to be in the range
[−1.0, 1.0]. Thus, we can not have an absolute measure of
confidence for further decision making (e.g. when to update
the template, or when to vary the size of the search window,
etc.). Therefore, some researchers, e.g. [47], use the normal-
ized correlation (NC):

c(m, n) =
∑K−1

i=0
∑L−1

j=0 s(m + i, n + j)t (i, j)
√∑K−1

i=0
∑L−1

j=0 s2(m + i, n + j)
√∑K−1

i=0
∑L−1

j=0 t2(i, j)
.

(3)

The numerator of NC is the same as (1) which is normalized
by two factors. These are basically the square-roots of the
energies of the image section and the template itself, respec-
tively. The NC has two salient features. Firstly, it is less sen-
sitive to varying illumination conditions than (1). Secondly,
its values are within the range [−1.0, 1.0], therefore further
decision making is possible for template-updating, etc. How-
ever, its counterpart in the frequency domain does not exist,
so it is computationally more expensive than (1).

Additionally, there is a normalized correlation coefficient
(NCC) [6,22,23,28], that is more robust to varying illumina-
tion conditions than (3), and its values are also normalized
within the range [−1.0, 1.0]. It is defined as:

c(m, n) =
∑K−1

i=0
∑L−1

j=0 [s(m + i, n + j) − µs][t (i, j) − µt ]
√∑K−1

i=0
∑L−1

j=0 [s(m + i, n + j) − µs]2
√∑K−1

i=0
∑L−1

j=0 [t (i, j) − µt ]2
, (4)

where µs and µt are the mean intensity values of the
image section and the template itself, respectively. However,
this metric has two disadvantages. Firstly, it requires that the
intensity values of s or t must not be constant, otherwise the
correlation value will be infinity or indeterminate (but this
problem is not so serious in real-world imagery because of
the inherent sensor noise). Secondly, its direct implementa-
tion is computationally more expensive than (3) (but there
is an efficient method [28] to calculate it using FFT and the
concept of summed-area table [13]).

Some researchers have used symmetric phase-only
matched filter (SPOMF) or phase correlation [10,27,38],
defined as:

c = real
(
i f f t

(
(S./‖S‖). ∗ (

T ∗./‖T ‖))), (5)

where‖.‖operator computes the magnitude of every complex
number in its input matrix, and the ./ is the element-by-ele-
ment division operator. In this approach, the transform coeffi-
cients are normalized to unit magnitude prior to computing
correlation in the frequency domain. Thus, the correlation
is based only on the phase information and is insensitive to
changes in image intensity. It has an interesting property that
it yields a sharp peak at the best-match position and attenu-
ates all the other elements in the correlation surface to almost
zero. Although this approach has proved to be successful, it
has a drawback that all transform components are weighted
equally, whereas one might expect that insignificant compo-
nents should be given less weight [28]. It is shown in [42,43]
and this paper that the SPOMF may produce false alarms,
and a small peak (significantly less than 0.5) even at the cor-
rect position depending upon the scene content. Moreover,
it does not provide us with a reliable confidence metric for
further decision making. However, its false-alarm rate has
been reduced to some extent in [47] by phase-correlating the
edge images of the search window and the template, rather
than their gray-level images.

2.2 BPNN-controlled fast normalized correlation (BCFNC)

In this section, we discuss the proposed BCFNC algorithm,
which is used to perform the template matching in our target
detection algorithm (to be discussed next).

2.2.1 Efficient implementation of NC using FFT and SAT

The template matching process with NC in spatial domain
using (3) is a computation intensive process. Therefore, we
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use a faster implementation using FFT and (summed-area
table) (SAT) [13]. The same method has been exploited in
[28], but for implementing the normalized correlation coeffi-
cient given by (4). The idea is that the numerator of (3) is
computed in frequency domain using (2), and the second fac-
tor in the denominator is pre-calculated only once for each
video frame (because the template remains same for an entire
iteration). However, the first factor varies with (m, n), so it
has to be calculated for every section of the search image
under the template. It is basically the square-root of the local
energy of the search window under the template. For efficient
calculations, we use the concept of SAT [13], which was used
in [28,36], in which it is equivalently referred to as “running
sum image” or “integral image”.
The SAT of the M × N search window is a matrix of the
size (M + 1) × (N + 1). The elements in its 0th row and
column are initialized to 0. All other elements are calculated
recursively as:

I (i, j) = s(i − 1, j − 1) + I (i, j − 1)

+I (i − 1, j) − I (i − 1, j − 1), (6)

where I is the SAT, s is the search window, i = 1, 2, . . . , M ,
and j = 1, 2, . . . , N . Once the SAT is computed, we can
easily calculate the sum of all the elements in any rectan-
gular section in the search-window by algebraically adding
only the four corner elements of the corresponding rectan-
gular section in its SAT. For example, if we want to cal-
culate the sum of elements contained in an L × K rectan-
gular section (in the search window) with top-left element
s(i, j), top-right element s(i, j + L − 1), bottom-right ele-
ment s(i + K − 1, j + L − 1), and bottom-left element
s(i + K − 1, j), the sum is computed from its SAT as:

sum = I (i + K , j + L) + I (i, j) − I (i + K , j)

−I (i, j + K ). (7)

We need to calculate the local energies (instead of the
local sums) of the search window. Thus, we first compute
the SAT of the square of the search window, and later find
the local sums of the squared search image using its SAT. As
a result, we get a matrix of size (M − K + 1)× (N − L + 1)

containing the local energies of the original search-window.
Note that the size of this matrix is exactly the same as that
of c. If we compute the square-root of the elements of this
matrix, and multiply the resulting matrix with the pre-cal-
culated “second factor of the denominator of (3)”, we get
the normalizing matrix. Finally, if we divide the numerator
of (3) (already computed using FFT) by this normalizing
matrix element-by-element, we obtain the normalized corre-
lation surface, c.

2.2.2 Performance comparison

Let tp be the time (in ms) required for the proposed efficient
implementation of NC, and td be the time (in ms) required for
direct implementation. Then, the speed gain of the proposed
implementation is calculated as:

Gp = td
tp

. (8)

Furthermore, let St, Ss, and Rts be defined as:

St = √
K L, Ss = √

M N , and Rts = St

Ss
. (9)

Assuming that the width and height of the zero-padded
images are optimal integers greater than or equal to P and Q
(Sect. 2.1) respectively, it has been observed that G p is a non-
linear function of mainly St and Rts, as shown in the surface
plot in Fig. 1. The surface plot has been obtained by experi-
mentally acquiring the speed gain for Ss = 40, 80, 120, . . . ,

600, and Rts = 0.025, 0.05, 0.075, . . . , 1.0 for every value
of Ss. If P and Q, individually, are power of 2, or if they con-
tain only small prime factors (e.g. 2, 3, or 5), then the FFT
computation is very efficient, and the speed gain is drasti-
cally increased as illustrated by various peaks in the surface
plot. For example, when St is 153 and Ss is 360, Rts becomes
0.425, and the size of the zero-padded images is set to be
600×600 (Note that 600 contains small prime factors: 2, 2,
2, 3, 5, and 5), then td is 2629.6 ms, while tp is only 66.2 ms;
thus, the speed gain (Gp) is 39.72 (as illustrated by the high-
est peak in the middle of the surface plot and mentioned in
Table 1). The flat valley (with the darkest color) indicates
Gp ≤ 1.0, while all the other regions in the surface indicate
Gp > 1. It shows that the frequency domain computation can
be sometimes slower than the spatial domain computation of

Fig. 1 Surface plot of Gp as a function of Rts and Ss, where Gp is the
speed-gain of frequency-domain NC implementation relative to its spa-
tial-domain implementation, Rts is the ratio of template-size to search-
window-size, and Ss is the search-window-size
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Table 1 BPNN Response Validated by the Experimental Results

M × N K × L Rts d td (ms) tp (ms) Gp

50×50 30×30 0.6000 ↓ 0.8 3.2 0.25

75×75 25×25 0.33 ↓ 4 8.81 0.45

320×240 10×10 0.036 ↓ 28.68 82.28 0.35

320×240 51×51 0.18 ↑ 260 80 3.25

320×240 75×75 0.27 ↑ 450 90 5

320×240 100×100 0.3610 ↑ 601.8 100.4 5.99

320×240 125×125 0.44 ↑ 681 100 6.81

320×240 300×200 0.884 ↓ 135.2 282.4 0.48

360×360 153×153 0.4250 ↑ 2629.6 66.2 39.72

512×512 60×30 0.0820 ↑ 776.34 317 2.45

512×512 205×205 0.4 ↑ 7631 390 19.56

640×480 400×300 0.6245 ↑ 10111 701 14.42

NC, therefore we should not use a single approach (direct or
proposed) for all cases. In order to harness the best features,
we propose a solution in the next section.

2.2.3 BPNN Controller

We propose a BPNN controller that can suggest which imple-
mentation of NC will perform faster for the images at hand,
before actually computing the correlation surface. We used
BPNN, because it can learn a non-linear multi-dimensional
mapping/classification problem better as compared to the
other conventional neural networks [2,3,20,24]. The BPNN
has been trained on the experimental data that was used to
generate the non-linear surface plot in Fig. 1. It is emphasized
that we used only three parameters (Ss, Rts, and Gp) to gener-
ate the surface plot in Fig. 1, and that the content of the images
was not used for training the neural network. The architec-
ture of the BPNN is designed as shown in Fig. 2. It contains
an input layer, a hidden layer, and an output layer. The input
layer has two nodes (i.e. m0 = 2), because we will input in it

Fig. 2 The proposed architecture of the BPNN classifier, where tansig
is the activation function used for the neurons in the hidden and the
output layers (see [48])

the pattern p consisting of two elements, as described in (2).
The output layer has one neuron (i.e. m2 = 1), because we
want the BPNN to output a single binary decision (either a
positive or a negative value). The number of neurons in the
hidden layer depends on the difficulty level of the mapping
or classification problem at hand. After few experiments, we
found out that only 20 hidden neurons (i.e. m1 = 20) could
solve our problem satisfactorily. The activation function of
the neurons in the hidden layer and the output layer is chosen
to be the tangent-sigmoid function, because it is non-linear
(which is necessary to solve a non-linear classification prob-
lem) and it speeds up the learning process of the neural net-
work (because it supports negative as well as positive values)
[16,20,24]. The training of the BPNN was carried out using
the efficient scaled-conjugate learning algorithm [30] with
the goal of mean-squared-error (mse) set to 0.01. The neural
network accepts a pattern (p) as its input, defined as:

p =
[

Ss

600
Rts

]T

, (10)

where the Ss is normalized by 600, which was its maximum
value in the experimental data. Thus, the maximum size of the
search window that it can support is 600×600 pixels (which
is more than the size we need, because we process the video
frames of size 320×240 pixels). The output, d, of the BPNN
classifier in its application phase can be easily determined as:

d = tansig{W21.tansig(W10.p + b1) + b2}, (11)

where W10, b1, W21, and b2 are the m1 × m0, m1 × 1, m2 ×
m1, and m2 ×1 matrices, respectively. Each row of W10 con-
tains the synaptic weights of its corresponding neuron in the
hidden layer. The elements of the row vector W21 are the
synaptic weights of the output neuron. The column vector
b1 contains the bias weights of the neurons in the hidden
layer, and b2 is the bias weight of the output neuron. All
these synaptic weights are adapted and optimized accord-
ing to the training dataset during the learning phase of the
BPNN. The tangent sigmoid (tansig) activation function is a
fast approximation of tanh function.2 It is defined as:

tansig(n) = 2

1 + e−2n
−1. (12)

The output of the BPNN, d, will be either a positive or a neg-
ative value. If d > 0, the proposed implementation of NC
will be faster than its direct implementation for the particular
sizes of the images, and vice versa, if d < 0. The response
of the BPNN has been tested with all the patterns from its

2 MATLAB 7.0 On-line Help Documentation
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Fig. 3 Surface plot showing the decisions of the BPNN classifier when
it was provided with various combinations of the search-window-size
and the size-ratio as a two-element input pattern

training dataset, and the resulting surface plot is shown in
Fig. 3.

If we compare the surface plots in Figs. 1 and 3, we can
observe that all the darkest regions at the valley (where Gp ≤
1) in Fig. 1 corresponds to all the blackish regions (where
d < 0) in Fig. 3. Similarly, all the higher regions (where
Gp > 1) in Fig. 1 correspond to all the whitish regions (where
d > 0) in Fig. 3. The BPNN is well generalized, that is, it
can produce the right decisions, even for those input patterns,
which were not included in its training dataset. The testing
results and experimental validations are listed in Table 1.
It may be noted that td is the time taken by the optimized
direct implementation of NC in OpenCV.3. The downward
arrow (↓) and the upward arrow (↑) indicate d < 0 and d
> 0, respectively. The testing was carried out on a PC with
1.7 GHz processor and 512 MB RAM. The value of Gp, for
every case listed in the table, validates the corresponding
decision (d) of the BPNN. At first sight, it may seem that the
spatial-domain implementation is applied rarely; however, it
is the one which is applied frequently especially when the
template size is small in case of distant object tracking, or
when the template size is very large in case of near (and
smoothly moving) object.

2.3 Proposed target detection algorithm

In this section, the proposed target detection algorithm is
explained in detail. For the first frame, steps 1 to 4, given
below, are applied on both the search-window and the tem-
plate. However, for the second frame and onward, the steps
1 to 4 will be applied on the search-window only, because

3 OpenCV v4: Intel’s Open Source Computer Vision Library
http://www.sourceforge.net/projects/opencvlibrary

the template for these frames will be generated adaptively
using the best-match section of the previous edge-enhanced
search-window and the previous template (as discussed in
Sect. 2.5).
Step 1: Apply w × w Gaussian smoothing filter with stan-
dard deviation, σw. Larger size of the filter results in more
smoothing, but it trades off with the computational speed.
Our experiments show that w = 9 works very fine in almost
all scenarios. If the value of σw is too low, the pixels (in the
search window) corresponding to the boundary coefficients
of the Gaussian mask get too small weight, and vice versa.
We use an efficient method3 for automatically calculating the
value of σw. It produces the effective weights of the Gauss-
ian mask with a desirable property that the sum of all the
coefficients in the resulting mask equals 1. The formula is
given as:

σw = 0.3
(w

2
− 1

)
+ 0.8. (13)

The smoothing process attenuates the undesirable artifacts
and/or sensor noise which occur especially when the ambi-
ent light around the sensor is low. Thus, it reduces the risk of
the generation of the false edges due to the noisy pixels.
Step 2: Apply horizontal and vertical Sobel masks [23,44]
on the smoothed image, and get the two images, Eh and Ev .
Step 3: Use Eh and Ev to compute the edge image as:

E(x, y) =
√

E2
h(x, y) + E2

v (x, y), (14)

where x = 0, 1, 2, . . . , U , and y = 0, 1, 2, . . . , V . For
the template, (U, V ) = (L , K ), and for the search-win-
dow, (U, V ) = (N , M). However, we have used its efficient
approximation (given below) which produces almost identi-
cal edge image [23,44].

E(x, y) = |Eh(x, y)| + |Ev(x, y)|. (15)

Step 4: The experiments have shown that the dynamic range
of the edge image is often too narrow towards darker side
as compared to the available range [0, 255], especially in
low-contrast imagery. Conventionally, the edge image is con-
verted into a binary image using a predefined threshold; how-
ever, this approach does not work well in a template matching
application, because some weak, but valuable, features are
lost. Furthermore, all the pixels with the gray level slightly
greater than the threshold will become 1 in this approach.
Thus, the rich content of gray level edge-features of the object
is also lost. In order to make the object detection algorithm
robust, we enhance the edges, using a normalization proce-
dure given by:

En(x, y) =
(

255

Emax − Emin

)
{E(x, y) − Emin}, (16)
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where Emin and Emax are the minimum and maximum
values in the un-normalized edge image, E , respectively, and
En is the normalized image. The normalization effectively
stretches (scales) the histogram of the image linearly in the
whole range [0, 255]. As a result, the contrast between the
object and the background is also enhanced. Now, the edges
of the object almost always have the values greater than 100
in any scenario. Nevertheless, it is safe to assume a thresh-
old τ = 50, for quenching the remaining false and very weak
edges due to smoothed noise and artifacts. The thresholding
operation is given by:

Ent (x, y) =
{

En(x, y) if En(x, y) > τ

0 otherwise
(17)

where Ent is the normalized and thresholded image. It may be
noted that Ent is not a binary image, but an edge-enhanced
gray-level image adequately containing the important fea-
tures of the object. Figure 4a shows a 320×240 real-world
image containing a small and dim helicopter having very
low contrast with its background. Fig. 4b is its edge image

Fig. 4 Effect of edge-enhancement. a A 320×240 gray level image
containing a very low-contrast object, b Edges of the image without
using the proposed edge-enhancement operations, c Edges of the same
image after the proposed edge-enhancement operations

obtained by applying only the Sobel masks without Gaussian
smoothing and edge-enhancement. It may be noted that the
edges of the object are very weak and almost invisible, and
that it also contains the undesirable edges of the noise and
artifacts. Figure 4c illustrates that the smoothing, normaliza-
tion, and thresholding operations enhance the edges of the
object and takes care of the edges due to artifacts and noise.
Step 5: Match the edge-enhanced template with the edge-
enhanced search-window using the proposed BCFNC algo-
rithm (Sect. 2.2).
Step 6: Locate the peak value cmax in the normalized corre-
lation matrix, and denote its position by (m∗, n∗), which is
basically the top-left position of the best-match in the search-
window.
Step 7: Assuming that K and L (i.e. height and width of
the template, respectively) are odd integers to have an exact
center point, locate the center of the best-match using:

(mc, nc) =
(

m∗ + K − 1

2
, n∗ + L − 1

2

)
. (18)

Step 8: Assuming that xt and yt are the column (horizontal)
and row (vertical) coordinates of the top-left corner of the
search-window in the frame respectively, locate the center of
the best-match with respect to the top-left frame origin at (0,
0), using:

(x, y) = (xt + nc, yt + mc). (19)

This (x, y) position is considered as the target location in
the current frame.

2.4 Template Updating

As time progresses, the shape, size, orientation, etc. of the
object may change during its motion in the video; therefore
a constant template can not work for a long and good track-
ing session. It must be adapted with time according to the
change in the image of the object. In this section, we will
first describe some conventional template updating schemes
and then the proposed one. In all cases, let b[k] be the best-
match section in the current search window that produced
the highest peak in the correlation surface, and let t[k] and
t[k + 1], respectively, be the current and the updated tem-
plate. The cmax is the peak value in correlation surface, as
previously defined. Finally, let τt be some threshold, such
that 0 < τt < 1. Typically, we get satisfactory results by
setting τt = 0.84.

2.4.1 Simple template updating method

In this scheme, the template is updated as:

t[k + 1] =
{

b[k] if cmax > τt

t[k] otherwise
(20)
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This approach assumes that the best-match provided by the
correlation is always the true target; which is not true because
sometimes the nearby clutter can produce a higher correlation
value than the actual object. Thus, the template is corrupted
by the clutter, and the actual object walks-off the template
very soon.

2.4.2 α -Tracker template updating method

In this approach, the template is updated as:

t[k + 1] =
{

t[k] + α(b[k] − t[k]) ifcmax > τt

t[k] otherwise
(21)

A larger value of α, close to 1.0, will cause a greater change
in the template than a smaller value. If α = 0, the template will
not be updated. In [9,21], a small constant value for α (e.g.
0.02) is used which reduces the effect of short-lived noise or
neighboring object by smoothing the update of the template
over time. However, if the tracked object is rapidly chang-
ing its shape, α should be large so as to avoid stagnation on
the object’s previous shape. In [47], the value of α is set to
be equal to cmax; however, this approach is not adequately
robust because cmax is generally greater than 0.9 in a good
tracking session which makes this method almost equivalent
to the simple template updating scheme.

2.4.3 The proposed template updating method

We propose a robust template updating scheme which uses
a low-pass IIR (Infinite Impulse Response) filter [4,31] with
adaptive coefficients, β and (1 − β):

t[k + 1] =
{

βb[k] + (1 − β)t[k] if cmax > τt

t[k] otherwise
(22)

where β = λcmax. The value of λ is recommended to
be in the range (0.0, 0.3] to get effective results. If the frame
rate is adequately high (e.g. 25 fps), a reasonable value of λ

is typically 0.15. In fact, the updated template is a weighted-
sum of the current best-match and the current template
(and the weights are adaptively changing). The current tem-
plate itself is not the previous best-match, but weighted-
sum of the previous best-match and the previous template.
Thus, our approach uses the history of the template, and it
does not quickly assign the best-match as the new template.
The amount of change to be introduced in the updated tem-
plate is determined by the quality of the correlated object.
A stronger match will introduce a larger change in the tem-
plate. The proposed template updating method copes with
the short-lived clutter and sudden occlusion as described
below.

Short-lived Clutter: When the camera is tracking an object,
the neighboring background pixels of the clutter will be con-
tinuously changing randomly; therefore these pixels will not
become the dominant part of the template due to the low
value of β. On the contrary, the pixels belonging to the
object do not change as rapidly, so their effect will become
more and more dominant in the template with time. As a
result, the template will contain only the object and not the
clutter.
Sudden Occlusion: If the object is suddenly occluded by
another object for only a few frames, the correlation value
will suddenly drop below the threshold, and the template will
not be updated at all. When the object re-appears after the
sudden occlusion, there is a high probability that the shape
of the object will not change significantly, so it will again
produce the highest correlation value and the template will
be updated according to (22).

3 Target model for Kalman predictor

To further enhance the robustness of the tracking system,
we use the Kalman filter which estimates the position
of the target in the next frame. The predicted position is
exploited:

• To search the object of interest in the next frame around
the predicted position only (see Sect. 4), so that the proba-
bility of picking-up a similar object moving in a different
direction can be minimized,

• To create a dynamic search window of optimal size (see
Sect. 4), and

• To make the motors of PTU ready (one step ahead of time)
to move towards the predicted position (see Sect. 6).

The dynamic model of the target used normally is “constant
velocity with random walk”, but we use 2-D “constant-accel-
eration with random walk [8]” model with six states, because
it provided better accuracy when we tested it for various tar-
get trajectories. We use the following target state equation
and the observation equation, respectively:

Xn+1 = �Xn + Un, (23)

and

Yn = MXn + Vn, (24)

where Xn is the proposed state vector containing six states
(position, velocity, and acceleration in x and y direction),
defined as:

Xn = [
xn

.
xn

..
xn yn

.
yn

..
yn

]T
. (25)
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The state transition matrix, �, used in our study, is:

� =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 T
T 2

2
0 0 0

0 1 T 0 0 0

0 0 1 0 0 0

0 0 0 1 T
T 2

2
0 0 0 0 1 T

0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (26)

where T is the sampling time (which is simply the inverse
of the frame rate). It may be noted that the xn and yn are
expressed in terms of second order approximation of their
Taylor expansions, respectively [8]. Un is the system noise
vector, given by:

Un = [
0 0 uxn 0 0 uyn

]T
, (27)

where uxn and uyn are the uncorrelated zero-mean Gauss-
ian noise elements with variances σ 2

ux and σ 2
uy , respectively.

They account for the small uncertainty in the acceleration of
the object. Yn is the measurement vector given by:

Yn = [
xn yn

]T
, (28)

where xn and yn are the target coordinates obtained from the
proposed target detection algorithm at current time step n.
M is the observation matrix given by:

M =
[

1 0 0 0 0 0
0 0 0 1 0 0

]
, (29)

and Vn is the observation noise vector given by:

Vn = [
vxn vyn

]T
, (30)

where vxn and vyn are the uncorrelated zero-mean Gaussian
noise elements with variances σ 2

vx and σ 2
vy , respectively. If

the variances are set to higher values, the Kalman predic-
tor will give the measurement coordinates lower importance
than the predicted coordinates while correcting its prediction
after the arrival of the new measurement [46]. Further details
of the Kalman filter can be obtained from [6,8,29,46].

4 Dynamic search window

The search window (in which the target will be searched for
in the next iteration) is kept smaller than the whole frame to
save CPU time and to get rid of the false alarms that may
be produced due to the clutter present in the background.
However, it should not be too small; otherwise there is a
risk of losing the track of the target [6]. Conventionally, the

size of the search window is set to be constant throughout
the tracking session and its centre is located at the centre
of the current best-match [19] or at the predicted position
[6], but these approaches have some drawbacks: if the target
is moving and maneuvering very fast, it may go out of the
search window, and if the target is moving and maneuver-
ing very slow, the redundant background pixels and clutter
in the search-window will deteriorate the template match-
ing process. To eliminate these problems to a significant
extent, we propose to determine the location and an opti-
mum size of the search window, dynamically, as described
below.

We set the center of the search window at the position
(xp, yp) predicted by Kalman filter in the current iteration
for the next iteration. Now, let (xt, yt) and (xb, yb) be the
coordinates of the top-left and the bottom-right corners of
the search window for the next frame, and assume that L
(template-width) and K (template-height) are odd integers.
Then, we propose to set the coordinates of the two corners
of the search window for the next iteration as:

(xt, yt) =
(

x[n + 1|n] −
(

L − 1

2
+ κ + atx |εx |

)
,

y[n + 1|n] −
(

K − 1

2
+ κ + aty

∣∣εy
∣∣
))

, (31)

(xb, yb) =
(

x[n + 1|n] +
(

L − 1

2
+ κ + abx |εx |

)
,

y[n + 1|n] +
(

K − 1

2
+ κ + aby

∣∣εy
∣∣
))

, (32)

where κ is the minimum width of the border pixels around
the best-match. In our case, the PTU is continuously moving
the camera towards the target, so we use κ = 13 pixels only.
However, if the camera were fixed, κ could have a little larger
value. Furthermore, x[n + 1|n] and y[n + 1|n] are the target
coordinates predicted by the Kalman filter in the current iter-
ation for the next iteration. The εx and εy are the prediction
errors defined as:

εx = x[n] − x[n|n − 1], and εy = y[n] − y[n|n − 1],
(33)

where x[n|n−1] and y[n|n−1] are the target coordinates pre-
dicted by Kalman filter in the previous iteration for the cur-
rent iteration, respectively. The x[n] and y[n] are the target
coordinates calculated by our target detection algorithm in
the current iteration. Moreover, atx , aty, abx , and aby are the
scaling factors, which compensate for the possible prediction
errors in case of a sudden maneuvering of the object. If any
of the scaling factors is positive, the minimum-size search-
window will be expanded from the corresponding side pro-
portional to the corresponding prediction error. We set their
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values as:

(atx , abx ) =
{

(a1, a2) if εx � 0

(a2, a1) otherwise
, (34)

(
aty, aby

) =
{

(a1, a2) if εy � 0

(a2, a1) otherwise
, (35)

where a1 = −0.25 and a2 = 1.25. For example, if the predic-
tion error in x-axis is εx = +8, the target position (provided
by our target detection algorithm) is to the right of the pre-
dicted position, thus the minimum-size search window will
be contracted by 2 pixels from left (using atx = −0.25), and
expanded towards right side by 10 pixels (using abx = 1.25).

5 Evaluative comparison

In this section, we compare the robustness of the proposed
target detection method with the conventional correlation
based methods. First, we compare them on a single low-
contrast image with small and dim target. Then, we compare
them on challenging real-world image-sequences. Some of
these sequences were also used in [45] to test the robustness
of the mean-shift and the condensation trackers.

5.1 Comparison on Single Image

Figure 5 shows the gray-level template, its edges, and its
edge-enhanced version. The gray-level template was
extracted from the gray-level image (i.e. search-window)
shown in Fig. 4a. The top-left corner of the template in the
search-window was at (m, n) = (169, 224), where m and n
are the row and column coordinates, respectively. In this sec-
tion, we compare all the correlation-based target-detection
methods reviewed in this paper, and evaluate which tech-
nique produces a correct and clean peak at this location in
the correlation surface.

Figure 6a illustrates the correlation surface obtained when
the gray-level template was matched with the gray-level
search-window using simple correlation given by (1) or (2).
This method failed to locate the correct position of the object,
because it produced the highest peak of 8,871,601 value at
(10, 11) instead of (169, 224) along with infinite number of
other false peaks at all those spots which were brighter than
the object in the search window. In fact, the correlation value

Fig. 5 The 23×21 template (left), its edges (middle) and its edge-
enhanced version (right)

is lower (i.e. 8,226,021) at (169, 224) position, where the
object actually lies, since the object is darker than the back-
ground. Moreover, the correlation values are not normalized
in the range [−1.0, 1.0].

Figure 6b shows the correlation surface obtained when the
gray-level template was matched with the gray-level search-
window, using SPOMF given by (5). The method failed to
locate the correct location of the object because it produced
the highest peak of only 0.14 value at (10, 11) instead of (169,
224) along with many other false peaks.

Figure 6c illustrates the correlation surface which is the
result of matching the gray-level template with the gray-level
search window using NC given by (3). The object is located
correctly at (169, 224), and the highest peak has value of 1.0.
If we observe the surface closely, we can find that the mini-
mum correlation value in the whole surface is also too high,
i.e. 0.9945. This behavior of NC with gray level images may
result in the template-drift problem or detection of a wrong
target instead of the true target in critical situations.

Figure 6d shows the correlation surface obtained when the
gray-level template was matched with the gray-level search-
window using NCC given by (4). This method detects the
correct position of the target at (169, 224) with the peak
correlation value of 1.0. There are other positive as well as
negative peaks within the range [−1.0, 1.0], but their values
are not near the value of the correct peak as they were in the
NC approach with gray-level images, discussed above.

Finally, Fig. 6e illustrates a nice and clean correlation
surface resulting from the proposed edge-enhanced corre-
lation (see Sect. 2.3), in which the edge-enhanced template
(Fig. 5, right) is matched with the edge-enhanced search win-
dow (Fig. 4c) It is evident that there is only one peak with
the correlation value of 1.0, which is exactly at (169, 224).
Figure 6f shows the exact location of the helicopter detected.
The position of the top-left corner of the best-match is shown
by the black cross-hair at (m∗, n∗) = (169, 224), while the
position of the center of the best-match is indicated by the
white cross-hair at (mc, nc) = (179, 235).

5.2 Comparison on real-world video

For the real-world image sequences, we compare our tar-
get tracking algorithm only with the normalized correlation
coefficient (NCC) due to space constraint, because NCC
proved to be the next best method after our algorithm in the
previous section. However, some of these sequences were
also used in [45] to test the robustness of various recent track-
ers, so their results are cited for comparison wherever appli-
cable. For simplicity, let A1 be the target detection algorithm
based on NCC with α-tracker template updating method
using α = cmax as in [47], and A2 be the proposed target
detection algorithm and template updating scheme (with-
out Kalman filter and dynamic search window). In both the
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Fig. 6 Comparison of various correlation methods with the pro-
posed edge-enhanced BCFNC algorithm. The search-window and the
template were edge-enhanced images for our algorithm, while they
were gray-level images for the other methods. a Standard correla-
tion surface, b phase correlation surface, c normalized correlation
surface, d normalized correlation coefficient surface, e the proposed

edge-enhanced BCFNC surface, and f overlay of the + signs on the
target coordinates found by the edge-enhanced BCFNC on the search-
window, where the black and the white + signs represent the top-left
coordinates (m∗, n∗) and the centre-coordinates (mc, nc) of the best-
match, respectively

algorithms, the center of the search window (for the next
iteration) is assumed to be the center of the current best-
match and the size of the search window is kept three times
larger than that of the template. In both cases, a 25×19 tem-
plate is selected from the same position in the initial frame,

and τt = 0.85. First, we evaluate A1 and A2 exhaustively
on two challenging image sequences S1 and S2. Then, we
evaluate them on some other well-known sequences. The
sequence S1 contains 300 frames and was recorded by us
with a handy-cam. During its recording, we continuously and
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Fig. 7 Result of A1 algorithm for S1 image sequence, showing the template drift problem starting from Frame 271 and its failure starting from
Frame 273

randomly moved the camera very fast and changed its zoom
level frequently to introduce the object fading, fast and unpre-
dictable object-motion, and blur effects (all at the same time).
The S2 sequence contains 390 frames, in which an aircraft
is taking-off, during which its size is changing and the back-
ground is cluttered with trees and small buildings.4 To eval-
uate the accuracy of the algorithms, the ground truth (i.e. the
dataset of true target-coordinates) was generated manually
for every frame in both the sequences.

4 Available at http://www.fastpasses.com

Figure 7 is the result of A1 for S1 sequence. The template
is overlaid at the upper-left corner in every frame. The frame
index, correlation value, and the (x, y) coordinates of the
target location are also shown at the top of every frame.
We can see that the white target sign slowly keeps drift-
ing away from the helicopter and the track is lost when the
object is suddenly faded in Frame 272 (up to Frame 285).
It can be observed that during the fading time the object is
almost invisible. The resulting trajectory of the helicopter in
S1 is illustrated in Fig. 8, in which the template drifting and
track-loss is observable after Frame 272. Figures 9 and 10
show the efficiency of the proposed target detection and
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Fig. 8 Target trajectory for S1 sequence by produced by A1 algorithm
showing the failure from Frame 273 through the last frame of the image
sequence

template-updating schemes that keep a very good track of the
target with no template-drift even during the severe fading of
the object in the presence of fast and random object-motion
in the low contrast imagery.

Figure 11 shows some frames from the image sequence S2,
when A1 was tested on them. We can see that the target sign is
exactly at the middle of the airplane in Frame 1, but it slowly
drifts off backward in the subsequent frames, and the track
is lost in Frame 93, because the white roof of the building
comes suddenly in the upper neighborhood of the template
which is not included in the current template as shown at the
top left corner of Frame 93. The complete trajectory of the
airplane calculated by A1 is compared with the true trajectory
in Fig. 12, which illustrates the failure of the algorithm start-
ing from Frame 93. Figures 13 and 14 show the efficiency of
the proposed target detection and template updating schemes
that keep a good track of the airplane with negligible template
drifting, even during the sudden appearance of the white roof
of the building and the surrounding clutter. The reason is that
the proposed algorithm gives importance to the enhanced
edges of the object and background, rather than the intensity
levels of their whole structures.

To evaluate the accuracy of both the algorithms for both of
the image sequences, we carried out a post regression analy-
sis [16] which provides (1) the correlation between the true
and the calculated coordinates (R), and (2) the best-fit linear
equation between them consisting of a slope (m) and inter-
cept (C). Ideally, (R, m, C) = (100%, 1.0, 0). The results of
the post-regression analysis are summarized in Table 2 which
shows that our algorithm (A2) outperforms A1 algorithm in
accuracy.

Now, suppose A3 represents the algorithm which is the
combination of our A2, Kalman predictor and the proposed

dynamic search window. The third row in Table 2 summa-
rizes the results of the post-regression analysis, when
algorithm A3 was tested on S1 and S2 image sequences.
The accuracy of A3 is almost equivalent to that of A2 for
the sequence S1. However, the real advantage of the Kalman
predictor and the dynamic search window in A3 can be
observed in case of the sequence S2 (which was full of clut-
ter and contained significant object-scaling). The increased
accuracy is also illustrated by the trajectories in Fig. 15.

We have tested our target tracking algorithm (A3) also
on other numerous real-world image sequences, but due to
space constraint we present only some of them for further
evaluation.

Figure 16 shows how A3 persistently tracks a person in
the presence of other persons in the test video “ShopAssis-
tant2cor.mpg” from CAVIAR dataset5 until the person goes
out of the scene. In Frame 200, it can be seen that the target
person is occluded by another person; even then the tracking
is continued.

Figure 17 depicts the robust tracking of a tiny car
moving along the road in a low-contrast, noisy and shaky
video sequence recorded from an unmanned aerial vehicle
(UAV). The whole scene (including the car) is rotating and
translating simultaneously due to the motion of the UAV in
6 degree-of-freedom. Furthermore, in Frame 190, there is a
glare effect (varying illumination). Never-the-less, the pro-
posed algorithm tracks the car persistently and robustly.

Figure 18 illustrates some frames from the sequence
seq_ f ast.avi .6 Here, a person moves his face right and left
very fast (with slight rotation). It is illustrated in Fig. 6 in
[45] that the mean shift and the condensation trackers could
not track the fast moving face in this sequence. However, our
tracker is able to track it without any difficulty as shown. The
tracking algorithm proposed in [45] exploits a particle filter
using an appearance model based on spatial-color Mixture
of Gaussians (SMOG). Its results are comparative to those
of our algorithm, but it is not a real-time tracker.

Figure 19 shows some frames from the sequence
seq_mb.avi ,6 in which the face of a girl is occluded with
that of another person. In Fig. 7 in [45], it is reported that the
mean shift and the condensation trackers could not robustly
track the face of the girl during and after this occlusion. How-
ever, the tracker proposed in [45] could track it robustly. Our
tracker has also successfully survived the occlusion with the
comparative results, with the additional benefit of speed. The
edge-enhanced template is shown at the top-right corner of

5 CAVIAR (Context Aware Vision using Image-based Active Recog-
nition) test video clips 2003–2004, available at http://www.homepag-
es.inf.ed.ac.uk/rbf/CAVIAR/
6 Available at http://vision.stanford.edu/∼birch/headtracker/seq/
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Fig. 9 Result of our A2 algorithm for S1 image sequence. The proposed target tracking method successfully tracks the helicopter in all the frames
even during the severe object fading in very low-contrast video without any template-drift problem

each frame, and it can be observed how smoothly and robustly
it is being updated, without introducing significant effects due
to the occluding face.

6 Camera motion control

In this section, a simple, but very smooth and accurate motion
controller is described. It generates the precise pan-tilt veloc-
ity commands for the PTU to move the camera smoothly and
accurately towards the target. Its basic idea is adopted from
the so-called “Car-following control (CFC) Law”.1

6.1 Car-following control (CFC)

Suppose a car, F , is moving with a velocity VF and is follow-
ing another car, L , moving with a velocity VL , as shown in
Fig. 20. Let the positional error between the cars be denoted
by e. Then, the basic CFC law is then defined as:1

VF (new) = VL + f (e), (36)

where f (e) is a function of the positional error. The control
law states that “the speed of the follow car, F , should be set
to the speed of the lead car, L , plus a speed adjustment based
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Fig. 10 Target trajectory (row and column coordinates) for S1
sequence produced by our A2 algorithm. Note that the computed tra-
jectory is perfectly matching the ground truth trajectory for almost all
the frames

upon the positional error, e, between them”. This simple con-
trol strategy has some desirable characteristics:

• By attempting to match the lead velocity, the follow
car can maintain smooth tracking while the lead car is
in transit. This is not the case for “bang-bang” control
laws (e.g. [32]) that drive only based upon the positional
error (e).

• When the lead car stops, the f (e) term still drives F to a
proper steady state.

• Direction reversal of L can result in proper control of F .

• The function f (e) can use closed forms to determine what
correction term is required to minimize e, within a given
time bound and given current velocities.

Proposed Implementation of CFC: Given a servo-motor
PTU and a moving object in the video frames, the relative
velocity of the object in terms of PTU units (i.e. degree/sec-
ond) has two components: relative pan velocity (vrp) and
relative tilt velocity (vrt). We compute them as:

vrp[n] = Cspp
	x

	t
= Cspp

(
x[n] − x[n − 1]

T

)
, (37)

Fig. 12 Target trajectory (row and column coordinates) for S2
sequence produced by A1 algorithm, showing its track-failure starting
from Frame 93

Fig. 11 Result of A1 algorithm for S2 image sequence. Note that the template-drift problem starts from Frame 90 and the track-failure starts from
Frame 93 due to background clutter
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Fig. 13 Result of our A2 algorithm for S2 image sequence, showing how persistently it tracks the airplane in all the frames even in the presence
of high background clutter

Fig. 14 Target trajectory computed for S2 sequence by our A2 algo-
rithm. The computed target coordinates match the ground truth trajec-
tory. However, there is a little deviation in column (i.e. horizontal axis)
coordinates for some frames, due to the small-size template and the sim-
ilar body structure of the airplane in its middle part, where the initial
template was selected from

and

vrt[n] = Cspp
	y

	t
= Cspp

(
y[n] − y[n − 1]

T

)
, (38)

where T is the sampling time which is the inverse of the frame
rate, and Cspp is the conversion factor (obtained by camera
calibration procedure) that converts the units of the veloci-
ties from image pixels/second into PTU degrees/second. It
may be noted that x[n] and y[n] are the target coordinates
coming from our target detection algorithm. The new pan
and tilt velocities of the PTU (i.e. the follow velocities) are
calculated as:

vp[n] = (
vfp[n] − vrp[n]) + K ex [n], (39)

vt[n] = (vft[n] + vrt[n]) − K ey[n], (40)

where ex and ey are the positional errors in x- and y-axis,
respectively:

ex [n] = rx − x[n] and ey[n] = ry − y[n], (41)

Table 2 Post-Regression
Analysis for Accuracy of
A1, A2, and A3

Algo S1 S2

x y x y

R(%) m C R(%) m C R(%) m C R(%) m C

A1 94.8 1 −1.3 94.5 1 7.6 34.6 0.6 −0.8 −0.16 −0.4 258

A2 99.8 1 −0.4 99.7 1 0.4 93.6 0.9 1.2 99.1 1 −2.1

A3 99.8 1 −0.2 99.7 1 0.4 97.4 0.95 8.9 99.3 1 0.4
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Fig. 15 Target trajectory computed for S2 sequence by our A3 algo-
rithm. The computed target trajectory accurately follows the ground
truth trajectory in almost all the frames

where (rx , ry) are the coordinates of the reference point (or
track-point) which is normally the centre of the video frame,
(vfp, vft) are the current velocity components of the PTU fed

back by speed sensors and K is the proportional gain with the
unit of “degree.second/pixel”. Using the car-following con-
trol equations (39) and (40), we can command the PTU to
move the camera towards the object so that the object remains
always at the track-point. The terms inside the parentheses in
(39) and (40) represent the absolute lead velocities, while the
remaining terms represent the f (e) functions (or approach-
ing velocities), as mentioned in (36). The plus and minus
signs compensate the difference between the directions in
the pixel coordinate system and the PTU coordinate system.
We assume that the pan velocity of the PTU is positive if it
is moving towards left, and its tilt velocity is positive when
it is moving downwards.

6.2 Predictive Open-Loop CFC (POL-CFC)

The basic CFC [as implemented in the form of (39), (40) and
(41)] assumes that we are getting the actual pan-tilt veloci-
ties (vfp and vft) of the PTU through velocity sensors. But, in
practice, we did not have servo-mechanism. We had a step-
per-motor mechanism, which does not feedback its actual
velocities. In control theory, such a system is referred to as
“open-loop” system. The proposed POL-CFC algorithm does

Fig. 16 Frames 100, 150, 200, 250, 550, and 725 (in raster scan order) of “ShopAssistant2cor.mpg” video clip from CAVIAR dataset, illustrating
the robustness of our A3 algorithm even in the presence of occlusion, multiple similar objects, varying illumination, clutter, and object scaling

Fig. 17 Frames 1, 100, and 190 of a shaky video sequence recorded from an unmanned aerial vehicle (UAV) showing a small car being tracked
perfectly by our algorithm in the presence of blur, glare, and UAV motion in 6 degree-of-freedom
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Fig. 18 Frames 1, 8, 12, 20, and 25 of the seq_ f ast.avi sequence, in which the proposed algorithm tracks the face even during its fast left and
right motion. However, the mean-shift and condensation trackers could not track the fast-moving face (see Fig. 6 in [45])

Fig. 19 Frames 1, 31, 40, 53, and 74 of the seq_mb.avi sequence. The proposed algorithm tracks the face of the girl even during occlusion.
However, the mean-shift and condensation trackers could not robustly survive the occlusion in this sequence (see Fig. 7 in [45])

e

VF VL

Fig. 20 Demonstration of “Car-Following Control Law”

not require the feed-back velocities. It replaces these veloc-
ities with the previous control-generated pan-tilt velocities,
and uses η factor to control the amount added to the pre-
vious control-generated velocities. Furthermore, we use the
predicted target position in the image rather than its current
position, so that the PTU can be prepared one step ahead
of time to accurately reach the angular position correspond-
ing to the 3-D position of the target at the same time. We
present the POL-CFC algorithm as follows. Let the notation
x̂[n + 1|n] be defined as a target state predicted by Kalman
filter at iteration n for iteration n + 1. Then, we propose to
generate the pan-tilt velocities as:

vp[n] = vp[n − 1] + η
(
K êx [n + 1|n] − ˆvrp[n + 1|n]),

(42)

vt[n] = vt[n − 1] + η
( ˆvr t [n] − K êy[n + 1|n]), (43)

where η is a small positive constant (typically 0.1) which con-
trols the amount of velocity added to the previous velocity
command,

êx [n + 1|n] = rx − x̂[n + 1|n] and

êy[n + 1|n] = ry − ŷ[n + 1|n] (44)

are the predicted tracking errors in both axes, and

vrp[n] = Cspp

(
x̂[n + 1|n] − x̂[n|n − 1]

T

)
, (45)

vrt[n] = Cspp

(
ŷ[n + 1|n] − ŷ[n|n − 1]

T

)
(46)

are the predicted relative velocities of the target in both axes.
It may be noted that the previous velocity commands (vp[n−
1] and vt [n−1]) are only the approximations of the actual cur-
rent velocities of the PTU because it is not necessary that the
PTU will attain the previously commanded velocity within
a small sampling time, T , due to some practical limitations
(e.g. the motor response, the inertia of the PTU and cam-
era, etc). Thus, we implemented the following heuristic rule
for vp[n] and vt[n] to address the problem and eliminate the
initial overshoots:

v[n] =
{

τv if n < 12ANDv[n] > τv

v[n] (47)

where n is initialized when the object to be tracked is selected
by the user.

The motion controller has been calibrated for 1× to 25×
zoom levels of the video camera. The resolution of the pan-
tilt stepper motors in our PTU is 0.01285◦/step. The maxi-
mum steady-state error of the tracking system controlled by
POL-CFC is 0 for zoom-levels 1× to 6×, ±1 pixels for 7×
to 15×, ±2 pixels for 16× to 19×, and ±3 pixels for 20× to
25×. The steady state error is defined as the deviation of the
target coordinates from the track-point at time after the tran-
sient period has finished. Furthermore, the POL-CFC algo-
rithm offers 0% overshoot and 1.7 s rise-time. The percent
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overshoot and rise-time are the parameters to test the control
system in its transient (initial) period. The percent overshoot
is defined as:

%OS = 100 × (p − r)

r
, (48)

where p is the peak value and r is the reference or track-
point, and the rise time is referred to as the time taken by the
system to rise from 10 to 90% of the reference [5].

7 Experimental Results

In order to evaluate the performance of the proposed tar-
get tracking system (including the camera motion control),
we selected a stationary object from the top-left section of
the live video from the camera. Figure 21 shows the trajec-
tory (position) of the object in the video frame, the control
action (velocity) generated by the proposed controller and
the positional error in both the axes, while the object was
being centralized. Note that our PTU moves to the left if
vp > 0, and upward if vt < 0. The curves illustrate that the
controller generates a constant velocity initially at time t = 0
to start the motors from rest. When the controller senses that
the positional error is not reduced adequately, it increases the
speed quickly at t = 0.4 s. When the controller senses that
the error is now reduced significantly and the current PTU
velocity is greater than it should be for the current position of
the object, it reduces the velocity gracefully until the object
approaches the centre position (160, 120) in the video frame.
We can observe that there is no overshoot, the rise time is
1.7 s, and the steady state error is zero. Thus, the stationary
target selected from the position farthest from the center of
the frame is centralized within 3 s.

We tested the performance of the proposed system also for
various moving objects such as helicopters, airplanes, vehi-
cles, walking and running persons, etc. in real-world sce-
narios. In Fig. 22, we present the results for a person with
varying walking speed. We show the curves in horizontal
axis only. We can observe that the object is initially cen-
tralized within t = 2 s and it remains centralized accurately
regardless of the increasing velocity of the object. The small
vibrations are due to the jerky motion of the walking person.
Figure 23 shows how accurately and smoothly the modified
car-following controller moves the camera towards a helicop-
ter which is kept always at the center of the frame regardless
of its changing velocity. The overlaid content at the top of
every frame is “cmax, (x, y), zoom level, W (showing that the
search is carried out in the small search window), (vp, vt)”
where the pan and tilt velocities (vp, vt ) are expressed in
degrees/second. The edge-enhanced template is illustrated at
the bottom-left of the frame. The helicopter is caught from the
upper-left section of Frame 1, and is centralized within 1.76 s
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Fig. 21 Position, velocity and error curves in both axes, when a sta-
tionary object was being centralized in the video frames by the proposed
tracking system

(Frame 44). The tracking is continued even when the heli-
copter is very faded in low-contrast video. Figure 24 shows
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Fig. 22 Position, velocity and tracking error curves, when a moving
object (a walking man) was being tracked

some frames from a tracking session in which a running boy
is being tracked automatically by the moving camera, using
the proposed target detection and tracking algorithm, in the
presence of background clutter. It may be noted that the pan
velocity varies abruptly according to the instantaneous veloc-

ity of the running boy. Figure 25 depicts some tracking frames
in which a crow, which is a highly deformable object and
flies with abrupt velocity changes, is being tracked automat-
ically and robustly by our system. Figure 26 illustrates some
frames from a tracking video, in which a station wagon is
being tracked automatically by our moving camera in the
presence of a lot of clutter, rotation, and scale changes, using
the proposed target detection and tracking algorithm.

7.1 Implementation

The proposed object tracking application has been simulated
in MATLAB, and then implemented for real-time field oper-
ation using C/C++ and LabVIEW. There are three threads
in our LabVIEW program, all running in parallel, exploit-
ing the parallel processing capabilities of the processor in
a standard PC. The image processing operations and Kal-
man predictor run in the first thread, the POL-CFC algorithm
for motion control along with the serial-communication with
the PTU executes in the second thread, and the graphical-
user-interface is implemented in the third thread. We have
tested the application on a standard PC with 1.7 GHz pro-
cessor and 512 MB RAM. The code can easily process 25
to 200 frames per second (fps), depending on the size of the
template selected by the user while initialization, when the
frame size is 320×240 pixels.

8 Conclusion and future directions

We introduced a robust and real-time framework to track
an object of interest with a moving camera. The proposed

Fig. 23 Frames 1, 44, 88, and
128 (in raster scan order) of a
real-time real-world tracking
video, in which a very distant,
dim and small helicopter is
being tracked in low-contrast
scenario automatically by a
moving camera, using the
proposed target detection and
tracking algorithm. The
edge-enhanced template is
shown at the bottom-left of each
frame. It may be noted that the
helicopter is initially centralized
in the frame within 44 frames
(1.76 s)
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Fig. 24 Frames 140, 210, and 280 of a tracking video, in which a running boy is being tracked automatically by a moving camera, using the
proposed target detection and tracking algorithm

Fig. 25 Frames 1, 35, 64 and
91 (in raster scan order) of a
tracking video, in which a crow
(which is a highly deformable
object and flies with abrupt
velocity changes) is being
tracked automatically by our
moving camera tracking system.
Note that the object in Frame 1
has very low-contrast with the
back-ground

Fig. 26 Frames 1, 25, 50 and
75 (in raster scan order) of a
tracking video, in which a
station-wagon is being tracked
automatically by our moving
camera tracking system in the
presence of a lot of clutter,
rotation, and scale changes
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target tracking algorithm exploits Gaussian smoothing with
an automatic standard deviation parameter, Sobel edge detec-
tor, normalization, thresholding and BCFNC. An effective
and smooth method for updating the template is also intro-
duced. The algorithm has been further enhanced using a
Kalman predictor. A novel method is proposed to dynam-
ically determine the location and size of the search-window
depending upon the prediction and the prediction-error of the
Kalman filter. The proposed algorithm has been compared
with the other correlation-based target tracking techniques,
and (for some sequences) the mean-shift and the conden-
sation trackers. The results of the post-regression analysis
proves that our target tracking algorithm is significantly more
robust and accurate even in the presence of temporary object
fading, significant background clutter, variations in the size
of the object, variations in the illumination conditions, sig-
nificant object maneuvering, multiple objects, obscuration,
and partial occlusion of the object. However, a significant
improvement would be to address the situation in a more
systematic way when the object is completely occluded by
other object(s) for a long time-duration. Moreover, if the tem-
plate size is varied automatically according to the size of the
object, the target tracking algorithm is likely to be even more
robust.

Furthermore, a predictive open-loop car-following con-
trol (POL-CFC) for maneuvering the PTU has been pre-
sented. The controller calculates the predictive velocity of the
object to be tracked using Kalman filter, and then smoothly
adjusts the velocity of the PTU accordingly (without using
any velocity feedback from the motors). As a result, the object
remains always locked to the line-of-sight of the camera with
good accuracy, regardless of the change in the velocity of
the object. The POL-CFC algorithm offers 0% overshoot, 0
steady-state tracking error, and 1.7 s rise-time.

The overall algorithm has been implemented using multi-
ple threads, and it runs with the speed of 25–200 fps depend-
ing on the size of the template, where each frame is of size
320 × 240 pixels.
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